Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Visualization of cell migration during chemotaxis using spectral domain optical coherence tomography (OCT) requires non-standard processing techniques. Stripe artefacts and camera noise floor present in OCT data prevent detailed computer-assisted reconstruction and quantification of cell locomotion. Furthermore, imaging artefacts lead to unreliable results in automated texture based cell analysis. Here we characterize three pronounced artefacts that become visible when imaging sample structures with high dynamic range, e.g. cultured cells: (i) time-varying fixed-pattern noise; (ii) stripe artefacts generated by background estimation using tomogram averaging; (iii) image modulations due to spectral shaping. We evaluate techniques to minimize the above mentioned artefacts using an 800 nm optical coherence microscope. Effect of artefact reduction is shown exemplarily on two cell cultures, i.e. Dictyostelium on nitrocellulose substrate, and retinal ganglion cells (RGC-5) cultured on a glass coverslip. Retinal imaging also profits from the proposed processing techniques.

Original publication

DOI

10.1002/jbio.201000109

Type

Journal article

Journal

J Biophotonics

Publication Date

05/2011

Volume

4

Pages

355 - 367

Keywords

Artifacts, Cell Line, Cell Movement, Dictyostelium, Image Processing, Computer-Assisted, Retinal Ganglion Cells, Tomography, Optical Coherence