Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The transfer of lipid from the yolk to the avian embryo is mediated by the yolk sac membrane (YSM). Some, but not all, of the published morphological evidence supports the view that the lipid undergoes a cycle of hydrolysis and re-esterification during translocation across the YSM. The present study aims to test this view by investigating the capacity of the YSM to perform esterification of free fatty acids to form acyl-lipids. YSM pieces (area vasculosa), obtained from the chicken embryo at day 10 of development, were incubated in vitro in medium containing [14C]-palmitic acid. Radioactivity was rapidly incorporated into the tissue lipid indicating a high capacity for esterification. The incorporation was linear with time during the 1-h incubation. Approximately 84% of the incorporated label was recovered in triacylglycerol, 12% was incorporated into phospholipid and less than 1% was detected in cholesteryl ester. [14C]-palmitic acid was incorporated primarily at the sn-1/3 positions in the triacylglycerol molecule and at the sn-1 position of phospholipid. The incorporation of label into tissue pieces obtained from the non-vascularized peripheral region of the YSM (area vitellina) was much more limited than that observed for the area vasculosa. The results support the hypothesis that yolk lipid is hydrolyzed and re-esterified during transfer across the YSM.

Original publication




Journal article


J Comp Physiol B

Publication Date





163 - 168


Animals, Biological Transport, Active, Chick Embryo, Esterification, Fatty Acids, Fatty Acids, Nonesterified, Hydrolysis, In Vitro Techniques, Kinetics, Palmitic Acid, Phospholipids, Triglycerides, Yolk Sac