Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Genomic epidemiology, which links pathogen genomes with associated metadata to understand disease transmission, has become a key component of outbreak response. Decreasing costs of genome sequencing and increasing computational power provide opportunities to generate and analyse large viral genomic datasets that aim to uncover the spatial scales of transmission, the demographics contributing to transmission patterns, and to forecast epidemic trends. Emerging sources of genomic data and associated metadata provide new opportunities to further unravel transmission patterns. Key challenges include how to integrate genomic data with metadata from multiple sources, how to generate efficient computational algorithms to cope with large datasets, and how to establish sampling frameworks to enable robust conclusions.

Original publication




Journal article


Trends Parasitol

Publication Date



disease surveillance, infectious diseases, public health, real-time genomic epidemiology, spatial dynamics