Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The profound changes in the morphology, antigenicity, and functional properties of the host erythrocyte membrane induced by intraerythrocytic parasites of the human malaria Plasmodium falciparum are poorly understood at the molecular level. We have used mouse mAbs to identify a very large malarial protein (Mr approximately 300,000) that is exported from the parasite and deposited on the cytoplasmic face of the erythrocyte membrane. This protein is denoted P. falciparum erythrocyte membrane protein 2 (Pf EMP 2). The mAbs did not react with the surface of intact infected erythrocytes, nor was Pf EMP 2 accessible to exogenous proteases or lactoperoxidase-catalyzed radioiodination of intact cells. The mAbs also had no effect on in vitro cytoadherence of infected cells to the C32 amelanotic melanoma cell line. These properties distinguish Pf EMP 2 from Pf EMP 1, the cell surface malarial protein of similar size that is associated with the cytoadherent property of P. falciparum-infected erythrocytes. The mAbs did not react with Pf EMP 1. In one strain of parasite there was a significant difference in relative mobility of the 125I-surface-labeled Pf EMP 1 and the biosynthetically labeled Pf EMP 2, further distinguishing these proteins. By cryo-thin-section immunoelectron microscopy we identified organelles involved in the transit of Pf EMP through the erythrocyte cytoplasm to the internal face of the erythrocyte membrane where the protein is associated with electron-dense material under knobs. These results show that the intraerythrocytic malaria parasite has evolved a novel system for transporting malarial proteins beyond its own plasma membrane, through a vacuolar membrane and the host erythrocyte cytoplasm to the erythrocyte membrane, where they become membrane bound and presumably alter the properties of this membrane to the parasite's advantage.

Original publication

DOI

10.1083/jcb.104.5.1269

Type

Journal article

Journal

J Cell Biol

Publication Date

05/1987

Volume

104

Pages

1269 - 1280

Keywords

Animals, Antigens, Protozoan, Aotus trivirgatus, Biological Transport, Cell Adhesion, Cell Membrane, Epitopes, Fluorescent Antibody Technique, Microscopy, Electron, Molecular Weight, Plasmodium falciparum