Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Analysis of HIV-1 gene sequences sampled longitudinally from infected individuals can reveal the evolutionary dynamics that underlie associations between disease outcome and viral genetic diversity and divergence. Here we extend a statistical framework to estimate rates of viral molecular adaptation by considering sampling error when computing nucleotide site-frequencies. This is particularly beneficial when analyzing viral sequences from within-host viral infections if the number of sequences per time point is limited. To demonstrate the utility of this approach, we apply our method to a cohort of 24 patients infected with HIV-1 at birth. Our approach finds that viral adaptation arising from recurrent positive natural selection is associated with the rate of HIV-1 disease progression, in contrast to previous analyses of these data that found no significant association. Most surprisingly, we discover a strong negative correlation between viral population size and the rate of viral adaptation, the opposite of that predicted by standard molecular evolutionary theory. We argue that this observation is most likely due to the existence of a confounding third variable, namely variation in selective pressure among hosts. A conceptual non-linear model of virus adaptation that incorporates the two opposing effects of host immunity on the virus population can explain this counterintuitive result.

Original publication

DOI

10.1371/journal.pcbi.1004694

Type

Journal article

Journal

PLoS Comput Biol

Publication Date

01/2016

Volume

12

Keywords

Child, Computational Biology, Evolution, Molecular, HIV Infections, HIV-1, Host-Pathogen Interactions, Humans, Models, Biological