Research groups
Richard Wheeler
The Wheeler Lab is primarily researching how the highly motile single cell eukaryotic parasites which cause leishmaniasis (Leishmania species) and sleeping sickness (African trypanosomes) control their swimming and how this contributes to progression through their life cycles.
Research in this group exploits high content automated analysis of large data sets from light and electron microscopy, supported by mathematical modelling, to analyse how flagellum structure and cell shape contribute to cell swimming behaviours, how the cell generates these precisely defined structures and why parasites adapt their swimming to the different host and vector environments they encounter through their life cycles.
Much of this work also speaks to general questions regarding cell motility and flagellum function, including how defects in flagella cause human genetic disease - ciliopathies.
Supporting this work, Richard Wheeler co-manages the TrypTag.org data set a project which has determined the sub-cellular localisation of every trypanosome protein. Protein localisation within the highly structured trypanosome cells is informative for function and is a major new cell biology and parasitology resource while also supporting research in his group.
Recent publications
-
Nucleolar targeting in an early-branching eukaryote suggests a general physicochemical mechanism for ribosome protein sorting
Jeilani M. et al, (2021)
-
A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure
Journal article
Wheeler RJ., (2021), PLOS ONE, 16, e0259871 - e0259871
-
A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure
Journal article
Wheeler RJ., (2021)
-
Monoallelic antigen expression in trypanosomes requires a stage-specific transcription activator
Journal article
Escobar LL. et al, (2021)
-
The single flagellum of Leishmania has a fixed polarisation of its asymmetric beat.
Journal article
Wang Z. et al, (2020), J Cell Sci, 133