Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Cross-reactivity to SARS-CoV-2 from exposure to endemic human coronaviruses (eHCoV) is gaining increasing attention as a possible driver of both protection against infection and COVID-19 severity. Here we explore the potential role of cross-reactivity induced by eHCoVs on age-specific COVID-19 severity in a mathematical model of eHCoV and SARS-CoV-2 transmission. METHODS: We use an individual-based model, calibrated to prior knowledge of eHCoV dynamics, to fully track individual histories of exposure to eHCoVs. We also model the emergent dynamics of SARS-CoV-2 and the risk of hospitalisation upon infection. RESULTS: We hypothesise that primary exposure with any eHCoV confers temporary cross-protection against severe SARS-CoV-2 infection, while life-long re-exposure to the same eHCoV diminishes cross-protection, and increases the potential for disease severity. We show numerically that our proposed mechanism can explain age patterns of COVID-19 hospitalisation in EU/EEA countries and the UK. We further show that some of the observed variation in health care capacity and testing efforts is compatible with country-specific differences in hospitalisation rates under this model. CONCLUSIONS: This study provides a "proof of possibility" for certain biological and epidemiological mechanisms that could potentially drive COVID-19-related variation across age groups. Our findings call for further research on the role of cross-reactivity to eHCoVs and highlight data interpretation challenges arising from health care capacity and SARS-CoV-2 testing.

Original publication

DOI

10.1186/s12916-020-01887-1

Type

Journal article

Journal

BMC Med

Publication Date

12/01/2021

Volume

19

Keywords

COVID-19, Cross-reactivity, Endemic coronaviruses, Immunopathology, Individual-based model, Infectious disease dynamics, Mathematical model, SARS-CoV-2, Age Factors, COVID-19, Coronavirus, Coronavirus Infections, Cross Protection, Cross Reactions, Endemic Diseases, Hospitalization, Humans, Immunity, Heterologous, Patient-Specific Modeling, SARS-CoV-2, Severity of Illness Index