Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

<jats:p>LamPORE is a novel diagnostic platform for the detection of SARS-CoV-2 RNA that combines loop-mediated isothermal amplification with nanopore sequencing, which could potentially be used to analyse thousands of samples per day on a single instrument. We evaluated the performance of LamPORE against RT-PCR using RNA extracted from spiked respiratory samples and from stored nose and throat swabs collected at two UK hospitals. The limit of detection of LamPORE was 7-10 genome copies/microlitre of extracted RNA. This is above the limit achievable by RT-PCR but was not associated with a significant reduction of sensitivity in clinical samples. Positive clinical specimens came mostly from patients with acute symptomatic infection, and among these LamPORE had a diagnostic sensitivity of 99.1% (226/228 [95% CI 96.9-99.9%]). Among negative clinical specimens, including 153 with other respiratory pathogens detected, LamPORE had a diagnostic specificity of 99.6% (278/279 [98.0-100.0%]). Overall, 1.4% (7/514 [0.5-2.9]) of samples produced an indeterminate result on first testing, and repeat LamPORE testing on the same RNA extract had a reproducibility of 96.8% (478/494 [94.8-98.1]). This indicates that LamPORE has a similar performance to RT-PCR for the diagnosis of SARS-CoV-2 infection in symptomatic patients, and offers a promising approach to high-throughput testing.</jats:p>

Original publication

DOI

10.1101/2020.09.18.20195370

Type

Journal article

Publisher

Cold Spring Harbor Laboratory

Publication Date

25/09/2020