Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Composite scores are useful in providing insights and trends about complex and multidimensional quality of care processes. However, missing data in subcomponents may hinder the overall reliability of a composite measure. In this study, strategies for handling missing data in Paediatric Admission Quality of Care (PAQC) score, an ordinal composite outcome, were explored through a simulation study. Specifically, the implications of the conventional method employed in addressing missing PAQC score subcomponents, consisting of scoring missing PAQC score components with a zero, and a multiple imputation (MI)-based strategy, were assessed. The latent normal joint modelling MI approach was used for the latter. Across simulation scenarios, MI of missing PAQC score elements at item level produced minimally biased estimates compared to the conventional method. Moreover, regression coefficients were more prone to bias compared to standards errors. Magnitude of bias was dependent on the proportion of missingness and the missing data generating mechanism. Therefore, incomplete composite outcome subcomponents should be handled carefully to alleviate potential for biased estimates and misleading inferences. Further research on other strategies of imputing at the component and composite outcome level and imputing compatibly with the substantive model in this setting, is needed.

Original publication

DOI

10.1080/02664763.2021.1895087

Type

Journal article

Journal

Journal of Applied Statistics

Publication Date

01/01/2021