Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Several mathematical and standard epidemiological models have been proposed in studying infectious disease dynamics. These models help to understand the spread of disease infections. However, most of these models are not able to estimate other relevant disease metrics such as probability of first infection and recovery as well as the expected time to infection and recovery for both susceptible and infected individuals. That is, most of the standard epidemiological models used in estimating transition probabilities (TPs) are not able to generalize the transition estimates of disease outcomes at discrete time steps for future predictions. This paper seeks to address the aforementioned problems through a discrete-time Markov chain model. Secondary datasets from cohort studies were collected on HIV, tuberculosis (TB), and hepatitis B (HB) cases from a regional hospital in Ghana. The Markov chain model revealed that hepatitis B was more infectious over time than tuberculosis and HIV even though the probability of first infection of these diseases was relatively low within the study population. However, individuals infected with HIV had comparatively lower life expectancies than those infected with tuberculosis and hepatitis B. Discrete-time Markov chain technique is recommended as viable for modeling disease dynamics in Ghana.

Original publication

DOI

10.1155/2019/9362492

Type

Journal article

Journal

Interdiscip Perspect Infect Dis

Publication Date

2019

Volume

2019