Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Neisseria gonorrhoeae causes sexually transmitted infection (STI) gonorrhoea and is on the WHO critical list due to increasing antimicrobial resistance (AMR). The bacterium can carry a conjugative plasmid, pConj, which prevents the use of tetracycline or doxycycline for treating gonorrhea, and is responsible for spread of a β-lactamase plasmid, pbla; over 90% of gonococcal isolates also harbor a small cryptic plasmid, pCryp. We systematically analyzed the presence of these plasmids in other Neisseria spp., including Neisseria meningitidis, which causes sepsis/meningitis. pConj is the most frequently found plasmid in the meningococcus and is in many clonal complexes. The plasmid is associated with meningococcal carriage rather than disease, indicating that pConj imposes fitness costs during systemic disease. Phylogenetic analyses reveal that pConj is genetically diverse in N. meningitidis, indicating that it shares a long evolutionary history with the meningococcus and that the plasmid has been transferred at least twice from N. meningitidis to N. gonorrhoeae. Following the first transfer, gonococcal isolates carrying the plasmid underwent clonal expansion and disseminated pConj to other gonococcal lineages. The second introduction was associated with an altered conjugation machinery which reduces conjugation efficiency. Therefore, in contrast to chromosomal resistance which has evolved through introduction of genes from commensals, gonococcal plasmid-mediated resistance has arisen through transfer from another pathogen, N. meningitidis. Further antibiotic pressure from the use of doxycycline for post-exposure prophylaxis against STIs is likely to promote plasmid-mediated AMR in both N. gonorrhoeae and N. meningitidis. IMPORTANCE Horizontal gene transfer (HGT) is a major influence in driving the spread of antimicrobial resistance (AMR) in many bacteria. A conjugative plasmid which is widespread in Neisseria gonorrhoeae, pConj, prevented the use of tetracycline/doxycycline for treating gonococcal infection. Here, we show that pConj evolved in the related pathogen, Neisseria meningitidis, and has been acquired by the gonococcus from the meningococcus on multiple occasions. Following its initial acquisition, pConj spread to different gonococcal lineages; changes in the plasmid's conjugation machinery associated with another transfer event limit spread in the gonococcal populations. Our findings have important implications for the use of doxycycline to prevent bacterial sexually transmitted disease which is likely to exacerbate the spread of AMR through HGT in pathogenic bacteria.

Original publication




Journal article



Publication Date



AMR, HGT, Neisseria, conjugation, evolution, plasmid