Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

An in vitro model of Plasmodium falciparum-infected red blood cell sequestration which uses C32 amelanotic melanoma cells as targets has been used to examine the binding capacity of infected red blood cells from subjects with naturally acquired P. falciparum infections of varying severity. The binding of infected red blood cells (IRBCs) to melanoma cells was specific to cells containing mature parasites. Variations in target cell density and in conditions of growth had significant effects on binding. Binding was pH dependent, being maximum at a pH of 6.9. Using standardized conditions the binding capacity of individual isolates of P. falciparum could be measured with a high degree of reproducibility. Binding capacity of IRBCs from 51 subjects between the ages of 6 months and 15 years varied between 12 and 1254 IRBCs per 100 melanoma cells when RBC suspensions at a 1% parasitemia and 4% hematocrit were used. Variation in binding was not related to the level of peripheral parasitemia of the isolate or to differences in adaptation to culture conditions. The binding capacity of parasitized cells from subjects with cerebral malaria did not differ from that of IRBCs from subjects with less serious clinical manifestations.

Original publication

DOI

10.1016/0014-4894(88)90123-3

Type

Journal article

Journal

Exp Parasitol

Publication Date

04/1988

Volume

65

Pages

202 - 208

Keywords

Adolescent, Animals, Brain Diseases, Cells, Cultured, Child, Child, Preschool, Erythrocytes, Humans, Hydrogen-Ion Concentration, Infant, Malaria, Melanoma, Plasmodium falciparum, Tumor Cells, Cultured