Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Intramammary infection with Streptococcus uberis is a common cause of bovine mastitis throughout the world. Several procedures to differentiate S. uberis isolates have been proposed. However, all are prone to interlaboratory variation, and none is suitable for the description of the population structure. We describe here the development of a multilocus sequence typing (MLST) scheme for S. uberis to help address these issues. The sequences of seven housekeeping gene fragments from each of 160 United Kingdom milk isolates of S. uberis were determined. Between 5 and 17 alleles were obtained per locus, giving the potential to discriminate between 1.3 x 10(7) sequence types. In this study, 57 sequence types (STs) were identified. Statistical comparisons between the maximum-likelihood trees constructed by using the seven housekeeping gene fragments showed that the congruence was no better than that between each tree and trees of random topology, indicating there had been significant recombination within these loci. The population contained one major lineage (designated the ST-5 complex). This dominated the population, containing 24 STs and representing 112 isolates. The other 33 STs were not assigned to any clonal complex. All of the isolates in the ST-5 lineage carried hasA, a gene that is essential for capsule production. There was no clear association between ST or clonal complex and disease. The S. uberis MLST system offers researchers a valuable tool that allows further investigation of the population biology of this organism and insights into the epidemiology of this disease on a global scale.

Original publication

DOI

10.1128/AEM.72.2.1420-1428.2006

Type

Journal article

Journal

Appl Environ Microbiol

Publication Date

02/2006

Volume

72

Pages

1420 - 1428

Keywords

Animals, Base Sequence, Cattle, DNA, Bacterial, England, Evolution, Molecular, Female, Genes, Bacterial, Glucuronosyltransferase, Hyaluronan Synthases, Mastitis, Bovine, Streptococcal Infections, Streptococcus