Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Toll-like receptor (TLR) family of cell surface molecules represent a major component of the pattern recognition system, which enables both vertebrates and invertebrates to detect invading microorganisms and mount an anti-microbial response. The TLR repertoire of mouse and man has been intensively studied and in this manuscript we report the identification of ESTs with homology to chTLR5 and chTLR7, and independently confirm the identification of chTLR 1/6/10 and 3 in the EST databases. We have determined the mRNA expression patterns for seven chicken TLRs (chTLR) in a wide range of chicken tissues, isolated immune cell types and cultured cells. Some of the chTLR were expressed in most tissues (chTLR1/6/10, chTLR3, chTLR4 and chTLR5), whereas others exhibited more restricted expression patterns (chTLR2 type 1, type 2 and chTLR7). Similarly distinct patterns of chTLR expression were seen with innate and adaptive immune cell types isolated from peripheral blood or spleen and with cultured cells of somatic or immunological origin. An understanding of the TLR repertoire for different tissues, immune cell subsets and cultured cell types allows more refined interpretation of immune induction in response to chicken pathogens.

Original publication




Journal article


Vet Immunol Immunopathol

Publication Date





117 - 127


Animals, B-Lymphocytes, Cell Line, Chickens, Expressed Sequence Tags, Gene Expression Regulation, Immunomagnetic Separation, Membrane Glycoproteins, RNA, Messenger, Receptors, Cell Surface, Reverse Transcriptase Polymerase Chain Reaction, Specific Pathogen-Free Organisms, T-Lymphocytes, Toll-Like Receptors