Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Human T-lymphotropic virus type 1 (HTLV-1) is a persistent CD4+ T-lymphotropic retrovirus. Most HTLV-1-infected individuals remain asymptomatic, but a proportion develop adult T cell leukemia or inflammatory disease. It is not fully understood how HTLV-1 persists despite a strong immune response or what determines the risk of HTLV-1-associated diseases. Until recently, it has been difficult to quantify lymphocyte kinetics in humans in vivo. Here, we used deuterated glucose labeling to quantify in vivo lymphocyte dynamics in HTLV-1-infected individuals. We then used these results to address four questions. (i) What is the impact of HTLV-1 infection on lymphocyte dynamics? (ii) How does HTLV-1 persist? (iii) What is the extent of HTLV-1 expression in vivo? (iv) What features of lymphocyte kinetics are associated with HTLV-1-associated myelopathy/tropical spastic paraparesis? We found that CD4+CD45RO+ and CD8+CD45RO+ T lymphocyte proliferation was elevated in HTLV-1-infected subjects compared with controls, with an extra 10(12) lymphocytes produced per year in an HTLV-1-infected subject. The in vivo proliferation rate of CD4+CD45RO+ cells also correlated with ex vivo viral expression. Finally, the inflammatory disease HTLV-1-associated myelopathy/tropical spastic paraparesis was associated with significantly increased CD4+CD45RO+ cell proliferation. We suggest that there is persistent viral gene expression in vivo, which is necessary for the maintenance of the proviral load and determines HTLV-1-associated myelopathy/tropical spastic paraparesis risk.

Original publication




Journal article


Proc Natl Acad Sci U S A

Publication Date





8035 - 8040


Cell Division, Gene Products, tax, HTLV-I Infections, Humans, Leukocyte Common Antigens, Lymphocyte Activation, Paraparesis, Tropical Spastic, Protein Tyrosine Phosphatase, Non-Receptor Type 1, T-Lymphocytes, T-Lymphocytes, Cytotoxic