Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The high HIV-1 prevalence, up to 4.6% in Guinea-Bissau, West Africa, makes it a relevant location for testing of therapeutic vaccines. With the aim of performing a clinical study in Guinea-Bissau, after first testing the vaccine for safety in Denmark, Europe, we here describe the design of a universal epitope peptide-based T cell vaccine with relevance for any geographic locations. The two major obstacles when designing such a vaccine are the high diversities of the HIV-1 genome and of the human major histocompatibility complex (MHC) class I. We selected 15 CD8-restricted epitopes predicted from conserved regions of HIV-1 that were subdominant (i.e., infrequently targeted) within natural infections. Moreover, the epitopes were predicted to be restricted to at least one of the five common HLA supertypes (HLA-A01, A02, A03, B07, and B44). Here, we validated the resulting peptide-specific, HLA-restricted T cell specificities using peptide-MHC class I tetramer labeling of CD8(+) T cells from HIV-1-infected individuals. The selected vaccine epitopes are infrequently targeted in HIV-1-infected individuals from both locations. Moreover, we HLA-typed HIV-1-infected individuals and demonstrated that the selected vaccine epitopes, when targeted, are restricted to the five most common HLA supertypes at both locations. Thus, the HLA supertype-directed approach achieved HLA coverage of 95% and 100% of the examined cohorts in Guinea-Bissau and Denmark, respectively. In conclusion, the selected vaccine epitopes match the host populations and HIV-1 strains of these two distant geographic regions, justifying clinical testing in both locations.

Original publication




Journal article


AIDS Res Hum Retroviruses

Publication Date





1434 - 1443


AIDS Vaccines, Adolescent, Adult, CD8-Positive T-Lymphocytes, Denmark, Drug Evaluation, Preclinical, Epitopes, T-Lymphocyte, Female, Guinea-Bissau, HIV Infections, HIV-1, HLA Antigens, Histocompatibility Testing, Humans, Male, Middle Aged, Molecular Sequence Data, Predictive Value of Tests, Sequence Alignment, Vaccines, DNA