Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Toll-like Receptors (TLR) are phylogenetically conserved transmembrane proteins responsible for detection of pathogens and activation of immune responses in diverse animal species. The stimulation of TLR by pathogen-derived molecules leads to the production of pro-inflammatory mediators including cytokines and nitric oxide. Although TLR-induced events are critical for immune induction, uncontrolled inflammation can be life threatening and regulation is a critical feature of TLR biology. We used an avian macrophage cell line (HD11) to determine the relationship between TLR agonist-induced activation of inflammatory responses and the transcriptional regulation of TLR. Exposure of macrophages to specific TLR agonists induced upregulation of cytokine and nitric oxide pathways that were inhibited by blocking various components of the TLR signalling pathways. TLR activation also led to changes in the levels of mRNA encoding the TLR responsible for recognising the inducing agonist (cognate regulation) and cross-regulation of other TLR (non-cognate regulation). Interestingly, in most cases, regulation of TLR mRNA was independent of NFκB activity but dependent on one or more of the MAPK pathway components. Moreover, the relative importance of ERK, JNK and p38 was dependent upon both the stimulating agonist and the target TLR. These results provide a framework for understanding the complex pathways involved in transcriptional regulation of TLR, immune induction and inflammation. Manipulation of these pathways during vaccination or management of acute inflammatory disease may lead to improved clinical outcome or enhanced vaccine efficacy.

Original publication

DOI

10.1371/journal.pone.0051243

Type

Journal article

Journal

PLoS One

Publication Date

2013

Volume

8

Keywords

Animals, Birds, Cell Line, Cytokines, Inflammation, MAP Kinase Signaling System, Macrophages, NF-kappa B, Nitric Oxide, RNA, Messenger, Signal Transduction, Toll-Like Receptors, Transcription, Genetic, Up-Regulation, p38 Mitogen-Activated Protein Kinases