Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

There is increasing evidence that a wider range of lymphoid cell types other than CD4(+) T helper lymphocytes are infected with HIV-1 in vivo, including CD8 lymphocytes, natural killer cells, and reticulodendritic cells. Each potentially contributes to the reservoir of infected cells that resist antiviral treatment and to the impairment of immune responses in AIDS. By quantitative PCR for HIV proviral sequences we have now obtained evidence for substantial infection of gammadelta lymphocytes, contributing 3-45% of the proviral load in peripheral blood. A large proportion of gammadelta lymphocytes constitutively expressed the chemokine receptors CCR5 and CXCR4, with evidence for marked up-regulation of CD8 in samples from HIV-infected individuals, corresponding to an activated phenotype. That gammadelta lymphocytes might be susceptible to HIV infection was investigated using in vitro infectivity assays of recombinant HIV-expressing green fluorescent protein, followed by flow cytometry. gammadelta, CD4, and CD8 lymphocytes were each productively infected, with gammadelta lymphocytes showing the greatest susceptibility. For each cell type, blocking assays with an anti-CD4 monoclonal antibody indicated that entry was CD4-dependent.

Original publication

DOI

10.1006/viro.2002.1759

Type

Journal article

Journal

Virology

Publication Date

20/01/2003

Volume

305

Pages

415 - 427

Keywords

Adult, CD4 Antigens, CD8 Antigens, Female, HIV-1, Humans, Immunophenotyping, Male, Middle Aged, Proviruses, Receptors, Antigen, T-Cell, gamma-delta, Receptors, CCR5, Receptors, CXCR4, T-Lymphocyte Subsets, Viral Load