Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The development of the fluorescently labeled tetrameric MHC-peptide complex has enabled the direct visualization, quantification and phenotypic characterization of antigen-specific T cells using flow cytometry and has transformed our understanding of cellular immune responses. The combination of this technology with functional assays provides many new insights into these cells, allowing investigation into their lifecycle, manner of death and effector function. In this article, we hope to provide an overview of the techniques used in the construction of these tetramers, the problems and solutions associated with them, and the methods used in the study of antigen-specific T cells. Understanding how the antigen-specific cells develop and function in different circumstances and with different pathogens will be key to understanding natural host defense, as well as vaccine design and assessment.

Original publication

DOI

10.1586/erv.10.66

Type

Journal article

Journal

Expert Rev Vaccines

Publication Date

07/2010

Volume

9

Pages

765 - 774

Keywords

Animals, Epitope Mapping, Histocompatibility Antigens, Humans, Peptides, Protein Multimerization, T-Lymphocytes