Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background: Interleukin (IL)-27 is a member of the IL-6/IL-12 family of cytokines. It is a potent cytokine, with potential antiviral impact, and has been shown to play a role in modulating functions of diverse cell types, including Th1, Th2, and NK and B cells, demonstrating both pro- and anti-inflammatory roles.  In hepatocytes, it is capable of inducing signal transducer and activator of transcription (STAT)1, STAT3 and interferon-stimulated genes. Methods: To address its role in viral hepatitis, the antiviral activity of IL-27 against hepatitis C virus (HCV) and hepatitis B virus (HBV) was tested in vitro using cell-culture-derived infectious HCV (HCVcc) cell culture system and the HepaRG HBV cell culture model. To further investigate the impact of IL-27 on hepatocytes, Huh7.5 cells were treated with IL-27 to analyse the differentially expressed genes by microarray analysis. Furthermore, by quantitative PCR, we analyzed the up-regulation of chemokine (CXCL)-10 in response to IL-27. Results: In both HCV and HBV infection models, we observed only a modest direct antiviral effect. Microarray analysis showed that the up-regulated genes mostly belonged to antigen presentation and DNA replication pathways, and involved strong up-regulation of CXCL-10, a gene associated with liver inflammation. Overall, gene set enrichment analysis showed a striking correlation of these genes with those up-regulated in response to related cytokines in diverse cell populations. Conclusion: Our data indicate that IL-27 can have a significant pro-inflammatory impact in vitro, although the direct antiviral effect is modest. It may have a potential impact on hepatocyte function, especially chemokine expression and antigen presentation.

Original publication

DOI

10.12688/wellcomeopenres.9917.1

Type

Journal article

Journal

Wellcome Open Res

Publication Date

17/11/2016

Volume

1

Keywords

CXCL10, Hepatitis C virus, IL-27, cytokines, gene array, hepatitis B virus, hepatocytes, inflammation