Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Background: We investigated the poorly understood impact of declining malaria transmission on maintenance of antibodies to Plasmodium falciparum merozoite antigens and infected erythrocytes (IEs), including functional immunity. Methods: In a 3-year longitudinal cohort of 300 Kenyan children, antibodies to different AMA1 and MSP2 alleles of merozoites, IE surface antigens, and antibody functional activities were quantified. Results: Over a period in which malaria transmission declined markedly, AMA1 and MSP2 antibodies decreased substantially; estimated half-lives of antibody duration were 0.8 year and 1-3 years, respectively. However, 69%-74% of children maintained their seropositivity to AMA1 alleles and 42%-52% to MSP2 alleles. Levels and prevalence of antimerozoite antibodies were consistently associated with increasing age and concurrent parasitemia. Antibodies promoting opsonic phagocytosis of merozoites declined rapidly (half-life, 0.15 years). In contrast, complement-fixing antibodies to merozoites did not decline and antibodies to IE surface antigens expressing virulent phenotypes were much better maintained (half-life, 4-10 years). Conclusions: A decline in malaria transmission is associated with reduction in naturally acquired immunity. However, loss of immunity is not universal; some key functional responses and antibodies to IEs were better maintained and these may continue to provide some protection. Findings have implications for malaria surveillance and control measures and informing vaccine development.

Original publication

DOI

10.1093/infdis/jix370

Type

Journal article

Journal

J Infect Dis

Publication Date

17/10/2017

Volume

216

Pages

887 - 898

Keywords

Africa, antibodies, complement, immunity, phagocytosis, Antibodies, Protozoan, Antigens, Protozoan, Child, Child, Preschool, Humans, Immunity, Humoral, Infant, Kenya, Malaria, Falciparum, Merozoites, Plasmodium falciparum, Time Factors