Vaccination can drive an increase in frequencies of antibiotic resistance among nonvaccine serotypes of Streptococcus pneumoniae.
Obolski U., Lourenço J., Thompson C., Thompson R., Gori A., Gupta S.
The bacterial pathogen Streptococcus pneumoniae is a major public health concern, being responsible for more than 1.5 million deaths annually through pneumonia, meningitis, and septicemia. Available vaccines target only a subset of serotypes, so vaccination is often accompanied by a rise in the frequency of nonvaccine serotypes. Epidemiological studies suggest that such a change in serotype frequencies is often coupled with an increase of antibiotic resistance among nonvaccine serotypes. Building on previous multilocus models for bacterial pathogen population structure, we have developed a theoretical framework incorporating variation of serotype and antibiotic resistance to examine how their associations may be affected by vaccination. Using this framework, we find that vaccination can result in a rapid increase in the frequency of preexisting resistant variants of nonvaccine serotypes due to the removal of competition from vaccine serotypes.