Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The genus Neisseria comprises a diverse group of commensal bacteria, which typically colonize the mucosal surfaces of humans and other animals. Neisseria meningitidis, the meningococcus, is notable for its potential to cause invasive meningococcal disease (IMD) in humans; however, IMD is comparatively rare, and meningococci normally colonize the nasopharynx asymptomatically. Possession of a polysaccharide capsule has been shown to be a prerequisite for disease in almost all IMD cases, and was previously considered unique to N. meningitidis, and potentially acquired by horizontal genetic transfer (HGT). Nevertheless, the capsule must also have some role in asymptomatic colonization and/or transmission, consistent with the existence of six non-disease-associated meningococcal capsule serogroups. In this study, full complements of putative capsule genes were identified in non-pathogenic Neisseria species, including Neisseria subflava and Neisseria elongata. These species contained genes for capsule transport and translocation homologous to those of N. meningitidis, as well as novel putative capsule synthesis genes. Phylogenetic analyses were consistent with the proposal that these genes were acquired by the meningococcus through HGT. In contrast with previous evolutionary models, however, the most parsimonious explanation of these data was that capsule transport genes had been lost in the common ancestor of the meningococcus, gonococcus, and their close relatives, and then reacquired by some meningococci. The most likely donor of the meningococcal transport genes was another Neisseria species.

Original publication

DOI

10.1099/mgen.0.000208

Type

Journal article

Journal

Microb Genom

Publication Date

09/2018

Volume

4

Keywords

colonization, invasive, meningitis, transmission, virulence determinants, Bacterial Capsules, Genes, Bacterial, Neisseria, Phylogeny