Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Human cytomegalovirus (HCMV) has a double-stranded DNA genome of approximately 235 Kbp that is structurally complex including extended GC-rich repeated regions. Genomic recombination events are frequent in HCMV cultures but have also been observed in vivo. Thus, the assembly of HCMV whole genomes from technologies producing shorter than 500 bp sequences is technically challenging. Here we improved the reconstruction of HCMV full genomes by means of a hybrid, de novo genome-assembly bioinformatics pipeline upon data generated from the recently released MinION MkI B sequencer from Oxford Nanopore Technologies. RESULTS: The MinION run of the HCMV (strain TB40/E) library resulted in ~ 47,000 reads from a single R9 flowcell and in ~ 100× average read depth across the virus genome. We developed a novel, self-correcting bioinformatics algorithm to assemble the pooled HCMV genomes in three stages. In the first stage of the bioinformatics algorithm, long contigs (N50 = 21,892) of lower accuracy were reconstructed. In the second stage, short contigs (N50 = 5686) of higher accuracy were assembled, while in the final stage the high quality contigs served as template for the correction of the longer contigs resulting in a high-accuracy, full genome assembly (N50 = 41,056). We were able to reconstruct a single representative haplotype without employing any scaffolding steps. The majority (98.8%) of the genomic features from the reference strain were accurately annotated on this full genome construct. Our method also allowed the detection of multiple alternative sub-genomic fragments and non-canonical structures suggesting rearrangement events between the unique (UL /US) and the repeated (T/IRL/S) genomic regions. CONCLUSIONS: Third generation high-throughput sequencing technologies can accurately reconstruct full-length HCMV genomes including their low-complexity and highly repetitive regions. Full-length HCMV genomes could prove crucial in understanding the genetic determinants and viral evolution underpinning drug resistance, virulence and pathogenesis.

Original publication

DOI

10.1186/s12864-018-4949-6

Type

Journal article

Journal

BMC Genomics

Publication Date

02/08/2018

Volume

19

Keywords

Human cytomegalovirus, MinION, Mutation, Nanopore, Quasi-species, Recombination, Variable number tandem repeats, de novo assembly, Algorithms, Cell Line, Cytomegalovirus, Evolution, Molecular, Genome Size, Genome, Viral, High-Throughput Nucleotide Sequencing, Humans, Nanopores, Sequence Analysis, DNA